乐天营销-安徽合肥SEO外包服务,合肥SEO公司知名品牌!

合肥SEO公司-SEO服务外包-乐天营销

当前位置: 合肥SEO > SEO教程 > SEO算法教程 >

多核学习在图像分类中的应用

时间:2016-06-10来源:SEO算法教程 作者:admin 点击:
分享到: 更多
------分隔线----------------------------
 
QQ在线咨询
咨询热线
18956238445
服务时间
8:00-22:00

1摘要

 

分类在搜索引擎中的应用非常广泛,这种分类属性可以方便在rank过程中针对不同类别实现不同的策略,来更好满足用户需求。本人接触分类时间并不长,在刚用SVM做分类的时候对一个现象一直比较困惑,看到大家将各种不同类型特征,拼接在一起,组成庞大的高维特征向量,送给SVM,得到想要的分类准确率,一直不明白这些特征中,到底是哪些特征在起作用,哪些特征组合在一起才是最佳效果,也不明白为啥这些特征就能够直接拼在一起,是否有更好的拼接方式?后来了解到核函数以及多核学习的一些思想,临时抱佛脚看了点,对上面的疑问也能够作一定解释,正好拿来和大家一起探讨探讨,也望大家多多指点。本文探讨的问题所列举的实例主要是围绕项目中的图像分类展开,涉及SVM在分类问题中的特征融合问题。扩展开来对其他类型分类问题,理论上也适用。

关键词: SVM  特征融合 核函数 多核学习

 

2基本概念阐述

 

SVM:支持向量机,目前在分类中得到广泛的应用

特征融合:主要用来描述各种不同的特征融合方式,常见的方式有前期融合,就是前面所描述的将各个特征拼接在一起,后期融合本文后面会提到

核函数:SVM遇到线性不可分问题时,可以通过核函数将向量映射到高维空间,在高维空间线性可分

多核学习:在利用SVM进行训练时,会涉及核函数的选择问题,譬如线性核,rbf核等等,多核即为融合几种不同的核来训练。

3应用背景

 

在图片搜索中,会出现这样的一类badcase,图像的内容和描述图像的文本不一致,经常会有文本高相关,而图像完全不一致的情况。解决这类问题的一个思路就是综合利用图像的内容分类属性和文本的query分类属性,看两者的匹配程度做相应策略。

4分类方法的选取

 

下面就可以谈到本文的重点啦,那是如何对图像分类的呢?

对分类熟悉的同学,马上可能要说出,这还不easy,抽取各种特征,然后一拼接,随便找个分类器,设定几个参数,马上分类模型文件就出来啦,80%准确率没问题。

那这个方法确实不错也可行,但是有没有可以改进的地方呢?

这里可能先要说明下图像分类的一些特殊性。

图像的分类问题跟一般的分类问题方法本质上没太大差异,主要差异体现在特征的抽取上以及特征的计算时间上。

图像特征的抽取分为两部分,一部分是针对通用图像的特征,还有一部分则是针对特定类别抽取的特征。这些特征与普通的文本特征不一致的地方在于,一个图像特征由于存在分块、采样、小波变换等,可能维度就已经很高。譬如常见的MPEG-7标准中提到的一些特征,边缘直方图150维,颜色自相关特征512维等。在分类过程中,如果将这些特征拼接在一起直接就可能过千维,但是实际在标注样本时,人工标注的正负样本也才几千张,所以在选择分类器时,挑选svm,该分类器由于可以在众多分类面中选择出最优分界面,以及在小样本的学习中加入惩罚因子产生一定软边界,可以有效规避overfitting。

在特征的计算时间上,由于图像处理涉及的矩阵计算过多,一个特征的计算时间慢的可以达到0.3秒,所以如何挑选出既有效又快速的特征也非常重要。

5两种特征融合方式的比较

★相关说明:

◎本文(多核学习在图像分类中的应用)责任编辑:SEO算法教程
◎如果(多核学习在图像分类中的应用)侵犯您的版权,请联系电子邮件:ilottecn@qq.com!